![]() ![]() |
函数 |
作者:佚名 文章来源:网络 点击数 更新时间:2005/8/2 23:15:35 文章录入:蓝星 责任编辑:蓝星 |
|
教学目标: 1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式; 2、使学生分清常量与变量,并能确定自变量的取值范围. 3、会求函数值,并体会自变量与函数值间的对应关系. 4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法. 5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的. 教学重点:了解函数的意义,会求自变量的取值范围及求函数值. 教学难点:函数概念的抽象性. 教学过程: (一)引入新课: 上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数. 生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗? 1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系. 2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系. 解:1、y=30n y是函数,n是自变量 2、 (二)讲授新课 刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数. 例1、求下列函数中自变量x的取值范围. (1) (3) (5) 分析:在(1)、(2)中,x取任意实数, (3)小题的 同理(4)小题的 第(5)小题, 同理,第(6)小题 解:(1)全体实数 (2)全体实数 (3) (4) (5) (6) 小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零. 注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 但象第(4)小题,有些同学会犯这样的错误,将答案写成 此文章共有2页 第 1 2 页 |
![]() ![]() |