![]() ![]() |
||||||||||||||||||
正弦和余弦 | ||||||||||||||||||
作者:佚名 文章来源:网络 点击数 更新时间:2005/8/2 23:14:02 文章录入:蓝星 责任编辑:蓝星 | ||||||||||||||||||
|
||||||||||||||||||
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等. 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础. (2) 正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点. 3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.
锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当 这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin 和cos这样的符号. 应当注意:单独写出三角函数的符号 4. 我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.
我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,
有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,
很显然,这些表达式提供给我们丰富的边与角间的数量关系. 5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.
利用勾股定理,很容易求出含有 根据定义,有 另一方面,可以想像,当
当
把以上结果可以集中列出下面的表:
6.教法建议: (1)联系实际,提出问题 通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边 (2) 动手度量、总结规律、给出定义以含 (3)加强数形结合思想的教学 “解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力. 此文章共有3页 第 1 2 3 页 |
||||||||||||||||||
![]() ![]() |