![]() ![]() |
|
函数单调性与奇偶性教案 | |
作者:佚名 文章来源:网络 点击数 更新时间:2005/7/30 1:07:23 文章录入:蓝星 责任编辑:蓝星 | |
|
|
教学目标
教学建议 一、知识结构 (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系. (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像. 二、重点难点分析 (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明. (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点. 三、教法建议 (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来. (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
教学目标 1.使学生了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性. 2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法. 3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神. 教学重点,难点 重点是奇偶性概念的形成与函数奇偶性的判断 难点是对概念的认识 教学用具 投影仪,计算机 教学方法 引导发现法 教学过程 一. 引入新课 前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质. 对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢? (学生可能会举出一些数值上的对称问题, 结合图象提出这些对称是我们在初中研究的关于 学生经过思考,能找出原因,由于函数是映射,一个 二. 讲解新课 2.函数的奇偶性(板书) 教师从刚才的图象中选出 学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令 从这个结论中就可以发现对定义域内任意一个 (1) 偶函数的定义:如果对于函数 (给出定义后可让学生举几个例子,如 提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出 学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义. (2) 奇函数的定义: 如果对于函数 (由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识) 例1. 判断下列函数的奇偶性(板书) (1) (3) (5) (要求学生口答,选出1-2个题说过程) 解: (1) (3) 前三个题做完,教师做一次小结,判断奇偶性,只需验证 学生经过思考可以解决问题,指出只要举出一个反例说明 从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的 教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有 可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论. (3) 定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书) 由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明. 经学生思考,可找到函数 例2. 已知函数 证明: 证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现, (4) 函数按其是否具有奇偶性可分为四类: (板书) 例3. 判断下列函数的奇偶性(板书) (1) 由学生回答,不完整之处教师补充. 解: (1)当 (2)当 (3) 当 当 综上 教师小结 (1)(2)注意分类讨论的使用,(3)是分段函数,当 三. 小结 1. 奇偶性的概念 2. 判断中注意的问题 四. 作业 略 五. 板书设计
探究活动
(1) 定义域为 (2) 判断函数 在此基础上试利用这个函数的单调性解决下面的问题: 设 |
|
![]() ![]() |